About

This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Rabu, 14 November 2012

Fenomena Fisika


Apa Itu Aurora ?

Di belahan bumi Utara terutama Alaska, seringkali langit malam yang gelap tiba-tiba menjadi terang-benderang. Warnanya biasanya hijau, merah, biru atau lembayung. Orang-orang kuno menghubung-hubungkan munculnya fenomena alam itu dengan penyakit dan peperangan. Aurora berwarna merah terang pernah dianggap sebagai “kolam darah” para pejuang yang gugur dalam peperangan.  di North Country, Inggris, aurora dikenal sebagai “lembing terbakar”.  Sebelum revolusi perancis meletus, sebuah aurora muncul. Penduduk Skotlandia dan Inggris mengaku mendengar suara pertempuran dan melihat peperangan di angkasa. Pada tanggal 24 Februari 1716, berbarengan dengan kematian James Ratcliffe, Earl Derwentwaterterakhir, muncul aurora berwarna merah terang dan bergerak cepat di langit. Sejak saat itu aurora itu dikenal sebagai “Cahaya Lord Derwenwater”.
Di masa lalu, aurora dipercaya dapat meramalkan cuaca, meskipun kebenarannya kadang-kadang berlawanan. Di Labrador, aurora merupakan pertanda cuaca yang baik, sedangkan di Greenland dianggap sebagai tanda datangnya angin selatan dan badai. Di Norwegia Utara, aurora sering dihubung-hubungkan dengan cuaca dingin.
Aurora adalah cahaya yang tercipta di udara. Cahayanya yang gemerlapan disebabkan oleh atom-atom dam molekul yang bertumbukan dengan partikel-partikel bermuatan, terutama elektron dan proton yang berasal dari matahari.  Partikel-partikel tersebut terlempar dari matahari dengan kecepatan lebih dari 500 mil per detik dan terhisap medan magnet bumi di sekitar kutub Utara dan Selatan. Warna-warna yang dihasilkan disebabkan benturan partikel dan molekul atau atom yang berbeda. Misalnya, aurora hijau terbentuk oleh benturan partikel elektron dengan molekul nitrogen. Aurora merah terjadi akibat benturan antara partikel elektron dan atom oksigen.
Sebenarnya ada dua jenis aurora. Aurora borealis terlihat di belahan bumi Utara, sedangkan Aurora australis terlihat di belahan bumi Selatan. Aurora sebenarnya bisa dijumpai di setiap bagian langit. Tetapi seringkali nampak terlalu pucat untuk terlihat dengan jelas kecuali di daerah-daerah di dekat Kutub Utara dan Selatan.
Istilah aurora borealis pertama kali digunakan oleh Galileo Galilei pada tahun 1619. Galilei sudah lama mempelajari cahaya-cahaya yang menakjubkan tersebut. Sayang sekali ia tidak dapat bekerja dengan leluasa. Saat itu, pihak Gereja Roma sangat membatasi ruang geraknya. Maklum, Galilei dianggap berseberangan dengan doktrin gereja yang sudah dianut selama ratusan tahun lamanya yang menyatakan bahwa bumi adalah pusat alam semesta. Galileo terpaksa menyamarkan tulisan-tulisannya dengan meminjam nama muridnya, Mario Guiducci. Tetapi pendapatnya tentang aurora masih kurang pas. Menurutnya, aurora disebabkan oleh pantulan sinar matahari pada lapisan atmosfer atas.

Aurora dapat terlihat hingga tengah malam. Pada saat itu, cahayanya terlihat turun. Beberapa saat kemudian, pita-pita cahaya yang melengkung muncul di atas cahaya, dan sinar mulai bergerak menuju bagian tengah langit. Cahaya ini semakin benderang. Pada intensitas penuh, aurora menutup seluruh angkasa seperti kelambu cahaya yang tertiup angin. Kadang-kadang cahaya ini muncul kurang dari jarak 500 mil di atas permukaan bumi dan kadang-kadang lebih dari 600 mil. Aurora terlihat paling terang saat terjadi  badai magnetik. Aura paling sering terlihat pada saat aktivitas titik matahari yang terbesar. Aurora borealis paling sering disaksikan di Fairbanks, Alaska, dan beberapa lokasi di Kanada Timur, Islandia dan Skandinavia Utara. Aurora australis paling jarang terlihat. Maklum, aurora ini biasanya justru terlihat terang di daerah yang jarang penduduknya. Aurora australis biasanya sering terlihat di Australia pada siklus 11 tahun aktivitas titik matahari. Titik-titik matahari maksimum berlangsung pada tahun 2000. Aurora Australis paling sering terlihat di Tasmania. Aurora ini pertama kali dikenal para ilmuwan Eropa pada abad ke-18, tetapi telah dikenal oleh kaum Aborigin dan Maori sejak tujuh ratus tahun yang lalu.
Selain lokasi, cuaca dan polusi cahaya juga mempengaruhi kualitas aurora. Di Alaska, waktu terbaik untuk melihat aurora adalah pada bulan-bulan Maret dan September hingga Oktober akhir. Saat itu langit dalam keadaan gelap dan cuacanya sangat cerah. Saat musim panas, langit malam tidak terlalu gelap. Sebaliknya pada musim dingin, udara menjadi terlalu dingin sehingga mengganggu kenyamanan orang-orang yang ingin mengamatinya.
Aurora muncul dalam berbagai bentuk yang berbeda. Penampakannya berubah-ubah tergantung pada panjangnya malam. Tahap paling indah adalah pada tengah malam. Aurora juga membentuk pita-pita  cahaya dengan berbagai warna, biasanya berwarna hijau, kuning, biru atau merah tua.
Menurut Syun Akasofu, bagian penting lainnya dari mekanisme aurora adalah “angin matahari”, yaitu sebuah aliran partikel yang keluar dari matahari. Akasofu dari Alaska Geophysical Institute, adalah orang yang sangat berperan dalam meneliti aurora. "Angin matahari menggerakkan sejumlah besar listrik di atmosfer (Sabuk Van Allen). Energi ini akan mempercepat partikel ke atmosfer bagian atas yang kemudian akan bertabrakkan dengan berbagai gas. Hasilnya adalah warna-warna di angkasa yang bergerak-gerak", ucapnya. Tekanan listrik mengeluarkan molekul gas menjadi keadaan energi yang lebih tinggi, yang mengakibatkan lepasnya foton. Warna tergantung pada frekuensi tumbukkan antara partikel-partikel dan gas-gas. Mekanisme ini hampir sama dengan nyala lampu berpendar atau lampu neon.

Hukum Archimedes dan Aplikasinya


Bunyi Hukum Archimedes
Hukum Archimedes mengatakan bahwa “Jika suatu benda dicelupkan ke dalam sesuatu zat cair, maka benda itu akan mendapat tekanan keatas yang sama besarnya dengan beratnya zat cair yang terdesak oleh benda tersebut”.
Berdasarkan hukum diatas, terciptalah 3 hukum turunan dari hukum Archimedes yang berbunyi:
1.    Benda akan terapung jika massa jenis benda yang dimasukan kedalam air lebih kecil dari massa jenis zat cairnya.
2.    Benda akan melayang jika massa jenis benda  yang dimasukan kedalam air sama dengan massa jenis zat cairnya.
3.    Benda akan tenggelam jika massa jenis benda yang dimasukan kedalam air lebih besar dari pada massa jenis zat cairnya.

Penerapan Hukum Archimedes
Setelahnya memahami ilmu tentang pentingnya konsep gaya archimedes kini kita akan lebih mengetahui seberapa besar ilmu yang ditemukan secara tidak sengaja ini.Penerapan hukum Archimedes dapat Anda jumpai dalam berbagai peralatan dari yang sederhana sampai yang canggih.

§  Hidrometer

Hidrometer merupakan alat untuk mengukur berat jenis atau massa jeniszat cair. Jika hidrometer dicelupkan ke dalam zat cair, sebagian alat tersebut akan tenggelam. Makin besar massa jenis zat cair, Makin sedikit bagian hidrometer yang tenggelam. Hidrometer banyak digunakan untuk mengetahui besar kandungan air pada bir atau susu. Hidrometer terbuat dari tabung kaca. Supaya tabung kaca terapung tegak dalam zat cair, bagian bawah tabung dibebani dengan butiran timbal. Diameter bagian bawah tabung kaca dibuat lebih besar supaya volume zat cair yang dipindahkan hidrometer lebih besar. Dengan demikian, dihasilkan gaya ke atas yang lebih besar dan hidrometer dapat mengapung di dalam zat cair. Tangkai tabung kaca hidrometer didesain supaya perubahan kecil dalam berat benda yang dipindahkan (sama artinya dengan perubahan kecil dalam massa jenis zat cair) menghasilkan perubahan besar pada kedalaman tangki yang tercelup di dalam zat cair. Artinya perbedaan bacaan pada skala untuk berbagai jenis zat cair menjadi lebih jelas.

§  Jembatan Ponton

Jembatan ponton adalah kumpulan drum-drum kosong yang berjajar sehingga menyerupai jembatan. Jembatan ponton merupakan jembatan yang dibuat berdasarkan prinsip benda terapung. Drumdrum tersebut harus tertutup rapat sehingga tidak ada air yang masuk ke dalamnya. Jembatan ponton digunakan untuk keperluan darurat. Apabila air pasang, jembatan naik. Jika air surut, maka jembatan turun. Jadi, tinggi rendahnya jembatan ponton mengikuti pasang surutnya air.

§  Kapal Laut

Pada saat kalian meletakkan sepotong besi pada bejana berisi air, besi
akan tenggelam. Namun, mengapa kapal laut yang massanya sangat besar
tidak tenggelam? Bagaimana konsep fisika dapat menjelaskannya? Agar
kapal laut tidak tenggelam badan kapal harus dibuat berongga. hal ini
bertujuan agar volume air laut yang dipindahkan oleh badan kapal menjadi lebih besar. Berdasarkan persamaan besarnya gaya apung sebanding dengan volume zat cair yang dipindahkan, sehingg gaya apungnya menjadi sangat besar. Gaya apung inilah yang mampu melawan berat kapal, sehingga kapal tetap dapat mengapung di permukaan laut.

§  Kapal Selam dan Galangan Kapal

Pada dasarnya prinsip kerja kapal selam dan galangan kapal sama. Jika kapal akan menyelam, maka air laut dimasukkan ke dalam ruang cadangan sehingga berat kapal bertambah. Pengaturan banyak sedikitnya air laut yang dimasukkan, menyebabkan kapal selam dapat menyelam pada kedalaman yang dikehendaki.
Jika akan mengapung, maka air laut dikeluarkan dari ruang cadangan. Berdasarkan konsep tekanan hidrostastis, kapal selam mempunyai batasan tertentu dalam menyelam. Jika kapal menyelam terlalu dalam, maka kapal bisa hancur karena tekanan hidrostatisnya terlalu besar. Untuk memperbaiki kerusakan kapal bagian bawah, digunakan galangan kapal. Jika kapal akan diperbaiki, galangan kapal ditenggelamkan dan kapal dimasukkan. Setelah itu galangan diapungkan. Galangan ditenggelamkan dan diapungkan dengan cara memasukkan dan mengeluarkan air laut pada ruang cadangan.

§  Balon udara

Balon udara adalah penerapan prinsip Archimedes di udara. Balon udara harus diisi dengan gas yang massa jenisnya lebih kecil dari massa jenis udara atmosfer sehingga balon udara dapat terbang karena mendapat gaya ke atas, misalnya diisi udara yang dipanaskan.

Aplikasi Fisika


APLIKASI HUKUM NEWTON DALAM KEHIDUPAN SEHARI-HARI

Aplikasi hukum newton dalam kehidupan sehari – hari. Sekedar tambahan aja, dalam aplikasi teknik sipil, hukum newton menempati posisi teratas. Hampir semua formulasi diturunkan dari hukum newton, untuk kondisi statik dan dinamik, linear ataupun nonlinear. Membangun jembatan kereta, jalan layang, terowongan, bendungan, jembatan kabel bentang panjang, menara transmisi, gedung bertingkat, konstruksi kabel, stabilitas lereng, daya dukung fondasi bangunan, analisis getaran lantai jembatan, perilaku bangunan tinggi dalam merespon gempa/angin, perencanaan kapasitas balok dan kolom beton, kapasitas leleh struktur baja dan lain-lain, semua itu rumus utamanya cuma satu, “jumlah gaya (momen gaya) harus sama dengan nol”.
Manfaat ditemukannya supaya kita dapat mengetahui hukum-hukum gerak dan dapat berusaha menghindari dari  kejadian buruk akibat sifat-sifat gaya dan gerak, misal kelembaman, dan untuk menghindari efeknya kita memakai sabuk sehingga dapat menahan tubuh kita yang tersentak ke depan akibat pengereman (Dasar: Hukum I dan Hukum II newton)

Efek Hukum Newton 1:
v  Benda diam yang ditaruh di meja tidak akan jatuh kecuali ada gaya luar yang bekerja pada benda itu.
v  Waktu mobil direm, kita akan tersentak ke depan. Waktu mobil mau dijalankan, kita akan tersentak ke belakang.

Efek Hukum II Newton:
v  Kita memakai sabuk sehingga ketika kita tersentak ke depan, ada gaya penahan dari  sabuk melakukan perlambatan pada gerak kita ke depan dan tubuh kita tertahan.
v  Berat kamu ( W = m x g )
v  Energi dan usaha
v  Benda massanya kecil diberi gaya yang sama dengan benda yang massanya besar mengalami percepatan yang lebih besar dibandingkan benda yang massanya besar

Efek Hukum III Newton:
v  Mobil bertubrukkan mengalami gaya aksi dan reaksi yang sama,
namun percepatan yang berbeda tergantung massanya
.
v  Kita dapat berjalan karena ada gaya aksi reaksi.
v  Ketapel

Hukum Newton dan Contohnya

Hukum 1 Newton :
Sebuah benda mempertahankan kedudukannya
contoh : jika kita dalam sebuah mobil saat mobil itu tiba2 maju badan kita tiba2 terdorong ke belakang.
Hukum 2 Newton :
Secara matcmatik dijabarkan dcngan persamaan (F = m.a) menetapkan bahwa akselerasi obyek adalah sama dengan gaya netto dibagi massa benda.
Contoh :kita berada dalam lift
Hukum 3 Newton :
Ini merupakan gaya aksi = reaksi
contoh : saat kita menekan papan tulis (aksi) maka papan tulis memberikan reaksi , bila aksi  lebih besar dari pada reaksi maka papan tulis akan rusak dan sebaliknya.

Selasa, 13 November 2012

Fenomena Fisika


Pertanyaan Sederhana yang Mungkin Sulit Dijawab

Banyak fenomena menarik yang terjadi di alam, menyimpan “misteri” tanda kebesaran Tuhan Yang Maha Esa. Pertanyaan-pertanyaan muncul sebagai langkah awal untuk menguak ”misteri” tersebut. Pertanyaan yang sederhana diajukan oleh orang sekitar kita tentang fenomena alam mungkin akan sulit kita jawab. Berikut penjelasan fenomena-fenomena alam yang diperoleh dari beberapa sumber. Semoga bermanfaat.

1. Mengapa langit biru?

Sinar matahari yang menerangi langit siang berwarna putih yang “terbuat” dari warna pelangi.Debu dan partikel-partikel udara lain di udara mengurai cahaya dari matahari dan biru keluar paling kuat. Delapan foton cahaya biru muncul untuk setiap satu merah (cahaya biru yang memancar keluar dari molekul delapan kali lebih terang daripada cahaya merah). Langit tidak “murni” biru, karena warna-warna lain juga mencapai ke mata kita tetapi warna yang lain “ditenggelamkan” oleh warna biru.

2. Mengapa warna api biasanya orange?

Warna api tergantung dari suhu. Warna biru meanandakan suhu yang sangat tinggi. Api memerlukan oksigen. Ketika lilin terbakar, bagian tengah api,dekat dasarnya, tidak mendapatkan banyak oksigen. Jadi tampak gelap. Tetapi bagian luar dan puncak api mendapat banyak udara, di bagian ini api menyala terang. Saat sumbu terbakar dan lilih meleleh dan mendesis, karbon-serpihan lilin yang terbakar hangus dan berterbangan. Serpihan kecil karbon ini sangat panas, sehingga nyala api berwarna orange.

3. Mengapa bintang berkelap-kelip?

Bintang sebenarnya tidak berkelap-kelip. Bintang kelihatan berkelap-kelip apabila dilihat dari jarak jauh dan ketika cahayanya harus melewati udara dalam perjalananya ke mata kita. Saat sinar bintang melewati udara rapat kemudian udara tipis maka bintang tampak berkelap-kelip.

4. Dari mana datangnya pelangi?

Resep pelangi: butir-butir air di udara, cahaya, dan seseorang untuk melihatnya. Matahari harus “rendah” dilangit (sedikit di bawah garis cakrawala), anda berdiri membelakangi matahari memandang ke arah di mana hujan turun atau hujan baru turun. Seberkas sinar matahari menembus pusat tetesan air hujan kemudian sinar matahari dibiaskan oleh tetesan air hujan akibatnya sinar putih mendadak terpecah menjadi berkas-berkas warna yang cantik (pelangi).

5. Mengapa gelembung bulat?

Gelembung bulat karena tegangan permukaan menyebabkan lapisan cairan menarik diri ke bentuk yang mungkin paling kompak (stabil). Bentuk kompak di alam adalah bola. Jadi udara di dalam ditahan oleh gaya yang sama di sekeliling gelembung (sampai gelembung tidak pecah).

6. Bagaimana cara magnet menarik?

Magnet bisa menarik karena atom-atom dalam kelompok yang disebut domain magnetik (pertikel elementer) memiliki medan magnet dan menghadap ke arah yang sama. Jadi setiap domain seperti magnet kecil. Medan magnet tersebut disebabkan oleh arus listrik elektron-elektron yang bergerak mengorbit nukleus atom.

7. Bagaimana embun terjadi?

Embun terbentuk ketika udara yang berada di dekat permukaan tanah menjadi dingin mendekati titik dimana udara tidak dapat lagi menahan semua uap air. Kelebihan uap air itu kemudian berubah menjadi embun di atas benda-benda di dekat tanah. Sepanjang hari benda-benda menyerap panas dari matahari. Sedangkan di malam hari benda-benda kehilangan panas tersebut melalui suatu proses yang disebut radiasi termal. Ketika benda-benda di dekat tanah menjadi dingin, suhu udara disekitarnya juga menjadi berkurang. Udara yang lebih dingin tidak dapat menahan uap air sebanyak udara yang lebih hangat. Jika suhu udara bertambah semakin dingin, maka akhirnya akan mencapai titik embun. Titik embun adalah suhu dimana udara masih sanggup menahan uap air sebanyak mungkin. Bila suhu udara semakin bertambah dingin, sebagian uap air akan mengembun di atas permukaan benda yang terdekat.

8. Mata terlihat merah hasil foto kamera

Cahaya blitz dari kamera masuk ke mata dan difokuskan ke retina yang terdapat banyak pembuluh darah. Tiba di retina, bayangan sinar tadi dibuat bayangan oleh kamera di film. Dan ketika film di cetak, warna merah retina akan muncul di foto mata, sehingga mata terlihat berwarna merah.

9. Bagaimana kabut terbentuk?

Pada umumnya, kabut terbentuk ketika udara yang jenuh akan uap air didinginkan di bawah titik bekunya. Jika udara berada di atas daerah perindustrian, udara itu mungkin juga mengandung asap yang bercampur kabut membentuk kabut berasap, campuran yang mencekik dan pedas yang menyebabkan orang terbatuk. Di kota-kota besar, asap pembuangan mobil dan polutan lainnya mengandung hidrokarbon dan oksida-oksida nitrogen yang dirubah menjadi kabut berasap fotokimia oleh sinar matahari. Ozon dapat terbentuk di dalam kabut berasap ini menambah racun lainnya di dalam udara. Kabut berasap ini mengiritasikan mata dan merusak paru-paru. Seperti hujan asam, kabut berasap dapat dicegah dengan mengehentikan pencemaran atmosfer.

10. Mengapa kita tidak boleh melihat gerhana matahari dengan mata telanjang?

Pada saat kita menatap matahari ketika bagian matahari tertutup bulan, cahayanya tidak terlalu menyilaukan sehingga otak tidak memerintahkan pupil mata untuk mengecil. Akibatnya cahaya matahari yang kurang menyilaukan (tetapi tetap berbahaya) itu masuk dengan leluasa ke mata sampai ke retina. Bagian retina yang menerima cahaya matahari ini akan terbakar, tetapi karena retina tidak punya syaraf rasa sakit, kita tidak akan terasa apa-apa. Gangguan penglihatan baru mulai terjadi beberapa menit atau jam sesudah melihat gerhana.

11. Mengapa mobil tangki bensin selalu menyeret seuntai rantai besi?

Sewaktu truk melaju bensin akan terguncang, bebenturan dan bergesekan antara bensin dan dinding tangki. Ini dapat menyebabkan tangki bensin bermuatan listrik dan lama kelamaan akan terkumpul. Waktu berjalan debu akan melekat pada permukaan truk. Kalau debu itu tertumpuk terlalu banyak, dapat menimbulkan percikan bunga api. Ini sangat membahayakan terutama ketika bensin dituang. Untuk mencegah bahaya ini dengan menghantarkan muatan listrik yang timbul dalam tangki bensin maupun debu yang melekat pada permukaan truk itu ke tanah. Rantai yang diseret di belakang truk berfungsi untuk mengalirkan muatan-muatan listrik tersebut ke tanah.

12. Bagaimana gitar listrik dapat menghasilkan bunyi

Bagian gitar listrik yang menghasilkan bunyi adalah batang mendatar yang berisi magnet-magnet batang yang dililit kumparan kawat (disebut juga pickup). Senar gitar terbuat dari logam. Ketika bergetar, senar memotong garis medan magnet dan menghasilkan perubahan fluks magnetik dari magnet batang. Perubahan fluks ini menghasilkan arus listrik pada kumparan dan akan dikuatkan oleh ampliflier sehingga terdengar bunyi.

Aplikasi Fisika Dalam Kehidupan


Aplikasi Bernoulli Tendangan Pisang


David Beckham, Zinedine Zidane, Luis Figo, Roberto Carlos, Alessandro Del Piero, dan Andrea Pirlo merupakan pemain yang memiliki tendangan bebas (free kick) yang mematikan. Kiper sehebat Buffon, Casillas, Smeichel, Van Der Sar, dan Bartez pernah merasakan kehebatan tendangan bebas tersebut. Kiper-kiper tersebut tak berkutik ketika bola melewati pagar betis dan tanpa “permisi” masuk ke dalam gawang.
Tendangan bebas yang sering berujung gol tersebut dikenal dengan sebutan tendangan pisang. Disebut tendangan pisang karena bola yang ditendang akan membentuk lintasan melengkung ke samping seperti bentuk buah pisang. Bagaimana tendangan pisang ini dapat terjadi? Melalui fisika kita dapat menjelaskan peristiwa tersebut. Pemain-pemain yang memiliki kemampuan tendangan pisang tersebut menendang bola sedikit di bawah pusat berat bola dengan ujung sepatunya. Tendangan seperti ini merupakan gaya sentripental yang membuat bola melambung dan berputar (spin). Ketika bola bergerak aliran udara mengalir berlawanan arah dengan arah gerak bola.

Putaran bola akan mempercepat aliran udara di daerah A (perhatikan gambar) sehingga di daerah ini kecepatan udara lebih besar dibandingkan dengan kecepatan udara di daerah B. Menurut Bernoulli semakin cepat aliran udara maka tekanannya semakin rendah. Tekanan di daerah A lebih kecil dibandingkan dengan tekanan di daerah B. Perbedaan tekanan ini menimbulkan gaya tekan dari B ke A. Gaya tekan ini akan membuat bola berbelok membentuk lintasan yang melengkung seperti pisang. Peristiwa melengkungnya bola ini dalam fisika sering disebut Efek Magnus. Kalau kalian ingin menguasi tehnik tendangan pisang perlu latihan yang giat. Bagaimana?? Fisika itu memang asyik yah!!

Aplikasi Impuls dan Momentum

Fisika merupakan ilmu yang mempelajari materi dan interaksinya. Banyak konsep-konsep fisika yang bisa menjelaskan fenomena-fenomena di alam. Salah satunya penerapan konsep impuls dan momentum. Impuls adalah gaya yang bekerja pada benda dalam waktu yang relatif singkat, sedangkan momentum merupakan ukuran kesulitan untuk memberhentikan (mendiamkan) benda. Impuls dipengaruhi oleh gaya yang bekerja pada benda dalam selang waktu tertentu sedangkan momentum dipengaruhi oleh massa benda dan kecepatan benda tersebut. Berikut ini disajikan beberapa contoh penerapan konsep impuls dan momentum dalam kehidupan sehari-hari:



1. Karateka

Apakah anda seorang karateka atau penggemar film action? Jika kita perhatikan karateka setelah memukul lawannya dengan cepat akan menarik tangannya. Ini dilakukan agar waktu sentuh antara tangan dan bagian tubuh musuh relatif singkat. Hal ini berakibat musuh akan menerima gaya lebih besar. Semakin singkat waktu sentuh, maka gaya akan semakin besar.

2. Mobil

Ketika sebuah mobil tertabrak, mobil akan penyok. Penggemudi yang selamat akan pergi ke bengkel untuk ketok magic. Lho kok jadi ngomongin ketok magic ya…Ok cukup ketok magicnya. Mobil didesain mudah penyok dengan tujuan memperbesar waktu sentuh pada saat tertabrak. Waktu sentuh yang lama menyebabkan gaya yang diterima mobil atau pengemudi lebih kecil dan diharapkan keselamatan penggemudi lebih terjamin.

3. Balon udara pada mobil dan sabuk pengaman

Desain mobil yang mudah penyok tidak cukup untuk menjamin keselamatan pengemudi pada saat tetabrak. Benturan yang keras penggemudi dengan bagian dalam mobil dapat membahayakan keselamatan pengemudi. Untuk meminimalisir resiko kecelakaan tersebut, pabrikan mobil ternama menydiakan balon udara di dalam mobil (biasanya di bawah setir), wah bisa terbang dong (guyon….). Ketika terjadi kecelakaan pengemudi akan menekan tombol dan balon udara akan mengembang, sehingga waktu sentuh antara kepala atau bagian tubuh yang lain lebih lama dan gaya yang diterima lebih kecil. Sabuk pengaman juga didesain untuk mengurangi dampak kecelakaan. Sabuk pengaman didesain elastis.

4. Sarung Tinju

Chris John seorang petinju juara dunia asal Indonesia (hebat ya) pada saat bertinju menggunakan sarung tinju. Sarung tinju yang dipakai oleh para petinju ini berfungsi untuk memperlama bekerjanya gaya impuls ketika memukul lawannya, pukulan tersebut memiliki waktu kontak yang lebih lama dibandingkan memukul tanpa sarung tinju. Karena waktu kontak lebih lama, maka gaya yang bekerja juga semakin kecil sehingga sakit terkena pukulan bisa dikurangi.

5. Palu

Kepala palu dibuat dari bahan yang keras misalnya besi atau baja. Kenapa tidak dibuat dari kayu atau bambu ya? Kan lebih mudah mendapatkan kayu dan bambu, nggak mahal lagi (hemat atau pelit kambuh!!!) Palu dibuat dengan bahan yang keras agar selang waktu kontak menjadi lebih singkat, sehingga gaya yang dihassilkan lebih besar. Jika gaya impuls besar maka paku yang dipukul dengan palu akan tertancap lebih dalam.

6. Matras

Waktu pelajaran olahraga di sekolah dulu guruku akan mengambil nilai lompat tinggi. Galah yang dipasang horizontal nggak terlalu tinggi sekitar 1-1,2 meter terus di bawah galah diletakan matras. Matras dimanfaatkan untuk memperlambat waktu kontak. Waktu kontak yang relatif lebih lama menyebabkan gaya menjadi lebih kecil sehingga tubuh kita tidak terasa sakit pada saat jatuh atau dibanting di atas matras.

Tokoh Fisika dan Temuannya


Albert Einsten Dengan Teori Relativitasnya

Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan “pengabdiannya bagi Fisika Teoretis”. Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia. Pada tahun 1999, Einstein dinamakan “Orang Abad Ini” oleh majalah Time. Kepopulerannya juga membuat nama “Einstein” digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya “Albert Einstein” didaftarkan sebagai merk dagang. Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.
Biografi
1.    Masa muda dan universitas
Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola. Pada umur lima, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang “kosong” ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya).
Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme. Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika. Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia. Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur;j dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.
Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Maric, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.
2.    Kerja dan Gelar Doktor
     Pada saat kelulusannya Einstein tidak dapat menemukan pekerjaan mengajar, keterburuannya sebagai orang muda yang mudah membuat marah professornya. Ayah seorang teman kelas menolongnya mendapatkan pekerjaan sebagai asisten teknik pemeriksa di Kantor Paten Swiss dalah tahun 1902. Di sana, Einstein menilai aplikasi paten penemu untuk alat yang memerlukan pengatahuan fisika. Dia juga belajar menyadari pentingnya aplikasi dibanding dengan penjelasan yang buruk, dan belajar dari direktur bagaimana “menjelaskan dirinya secara benar”. Dia kadang-kadang membetulkan desain mereka dan juga mengevaluasi kepraktisan hasil kerja mereka. Einstein menikahi Mileva pada 6 Januari 1903. Pernikahan Einstein dengan Mileva, seorang matematikawan, adalah pendamping pribadi dan kepandaian; Pada 14 Mei 1904, anak pertama dari pasangan ini, Hans Albert Einstein, lahir. Pada 1904, posisi Einstein di Kantor Paten Swiss menjadi tetap. Dia mendapatkan gelar doktor setelah menyerahkan thesis “Eine neue Bestimmung der Moleküldimensionen” (“On a new determination of molecular dimensions”) dalam tahun 1905 dari Universitas Zürich.
     Di tahun yang sama dia menulis empat artikel yang memberikan dasar fisika modern, tanpa banyak sastra sains yang dapat ia tunjuk atau banyak kolega dalam sains yang dapat ia diskusikan tentang teorinya. Banyak fisikawan setuju bahwa ketiga thesis itu (tentang gerak Brownian), efek fotoelektrik, dan relativitas spesial) pantas mendapat Penghargaan Nobel. Tetapi hanya thesis tentang efek fotoelektrik yang mendapatkan penghargaan tersebut. Ini adalah sebuah ironi, bukan hanya karena Einstein lebih tahu banyak tentang relativitas, tetapi juga karena efek fotoelektrik adalah sebuah fenomena kuantum, dan Einstein menjadi terbebas dari jalan dalam teori kuantum. Yang membuat thesisnya luar biasa adalah, dalam setiap kasus, Einstein dengan yakin mengambil ide dari teori fisika ke konsekuensi logis dan berhasil menjelaskan hasil eksperimen yang membingungkan para ilmuwan selama beberapa dekade. Dia menyerahkan thesis-thesisnya ke “Annalen der Physik”. Mereka biasanya ditujukan kepada “Annus Mirabilis Papers” (dari Latin: Tahun luar biasa). Persatuan Fisika Murni dan Aplikasi (IUPAP) merencanakan untuk merayakan 100 tahun publikasi pekerjaan Einstein di tahun 1905 sebagai Tahun Fisika 2005.
3.    Gerakan Brownian
Di artikel pertamanya di tahun 1905 bernama “On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid”, mencakup penelitian tentang gerakan Brownian. Menggunakan teori kinetik cairan yang pada saat itu kontroversial, dia menetapkan bahwa fenomena, yang masih kurang penjelasan yang memuaskan setelah beberapa dekade setlah ia pertama kali diamati, memberikan bukti empirik (atas dasar pengamatan dan eksperimen) kenyataan pada atom. Dan juga meminjamkan keyakinan pada mekanika statistika, yang pada saat itu juga kontroversial. Sebelum thesis ini, atom dikenal sebagai konsep yang berguan, tetapi fisikawan dan kimiawan berdebat dengan sengit apakah atom benar suatu benda yang nyata. Diskusi statistik Einstein tentang kelakuan atom memberikan pelaku eksperimen sebuah cara untuk menghitung atom hanya dengan melihat melalui mikroskop biasa. Wilhelm Ostwald, seorang pemimpin sekolah anti-atom, kemudian memberitahu Arnold Sommerfeld bahwa ia telah berkonversi kepada penjelasan komplit Einstein tentang gerakan Brownian.